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General Field Theory Treatment of E-Plane
Waveguide Junction Circulators—Part 11:
Two-Disk Ferrite Configuration

M. EZZAT EL-SHANDWILY, MEMBER, IEEE, AHMAD A. KAMAL, MEMBER, IEEE, AND
ESMAT A. F. ABDALLAH

Abstract—This paper presents an analysis of the two-disk ferrite
E-plane waveguide junction circulator as a boundary value problem.
The junction is divided into different regions and the electromagnetic
fields are obtained in each region. Matching of the fields at the
common boundaries is used to obtain the characteristic modes in the
ferrite—dielectric region. Point matching technique, at an imaginary
boundary chosen between the center region of the junction and
the waveguides, is used to obtain the circulator characteristics.

Measurements carried out show good agreement between theory
and experiment.

I. INTRODUCTION

N THE E-PLANE junction circulator, the ferrite material

may take tire shape of a full height cylindrical rod.
However, the longitudinal RF magnetic field, on which this
type of circulator depends, is zero at the midheight of the
junction and therefore, the center portion of the ferrite rod is
not magnetically active. In addition, dielectric losses will be
present in this central portion due to the large electric field
which exists there. Thus the ferrite material may take the
shape of two disks placed on the common walls of the
waveguides, as shown in Fig. 1(a) and (b), where
the longitudinal RF magnetic field is maximum. In this case
a smaller volume of ferrite material than both cases of
H-plane configuration and full height E-plane configuration
is used.

For the purpose of the analysis in this paper, the central
portion of the junction is divided into three regions which
are: the lower ferrite disk, the dielectric material, and the
upper ferrite disk, Fig. 1(a). The air surrounding the ferrite is
considered to be region 4, while the waveguides are con-
sidered to beregion 5, Fig. 1(b). Excitation takes place by the
dominant TE, , mode via only one of the waveguides. Since
the incident field varies along the z direction, and since the
ferrite construction is not continuous along this direction,
all the TE,, and TM,,, waveguide modes are excited.

By setting up the boundary conditions at all the disconti-
nuity surfaces, namely, the planes z = hy, z = (a — h,), the
cylindrical surface r = R, and performing the numerical
matching of the fields at an imaginary boundary between
region 4 and the waveguides (region 5), a system of nonho-
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Fig. 1. (a) Schematic representation of the center portion of the two-disk
ferrite E-plane junction circulator. (b) Plan view of the N-port two-
ferrite disk E-plane circulator.

mogeneous linear equations determining the reflection
coefficient, insertion loss, and isolation is found.

The same assumptions stated in the case of the full height
ferrite configuration are also adopted during this analysis.

II. THEORETICAL ANALYSIS OF N-PORT
CIRCULATORS

In the published literature concerning propagation in a
longitudinally magnetized ferrite structure, the discontinu-
ity takes place in the radial direction (transverse to the
direction of propagation). The propagation constants are
determined from the simultaneous solution of the determi-
nantal equation (obtained from application of boundary
conditions) and the dispersion relation (obtained from the
condition of consistency of solutions of the wave equations)
[1], [2].

In the present problem, discontinuities take place along
the direction of propagation, at the planes z = h, and
z = (a — h,). Matching of the fields takes place along planes
normal to the direction of propagation. This necessitates a
new approach to the solution of the boundary value
problem.

Maxwell’s equations in the ferrite medium are

V x E = —joulu] - H
V x H = jweos E.

1)
(2)
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By separating the transverse and the longitudinal compo-
nents of the fields and the curl operator in the above two
equations, we obtain

—jouoH,a, =V, x E, 3)
joudd) Bi=VoxaErax (@
joeoeE.a, =V, x H, (5)
joeoe ,E,=V, x a,H, + a, x%% (6)

where ¢ denotes the transverse plane, and @, denotes a unit
vector in the longitudinal Z direction.

From (3) to (6), and after making some algebraic and
vector manipulation we get the following two wave equa-
tions in the ferrite medium:

1 0°H, K OE,
PR 2+ VIH, + w?eot poH, + waosfﬂ % = 0 (7)
0°E, oK 0H,
2E 0 =
Vt z + 622 'u a E 0 (8)
where
2 _ g2

i, = effective permeability = K

The second step is to obtain H, and E, in terms of the
longitudinal components H, and E_ and their derivatives.
From (3) to (6) we get the following relations:

0*H, N 1 0*H,

et popH, + 2
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From (9) and (10) we obtain H,, Hy, E,, and Ein terms of
the longitudinal components and their derivatives.

Since we are going to match the field components on the
lower ferrite disk—dielectric interface and on the dielectric—
upper ferrite disk interface, i.e.,at z = h; and z = (a — h,),
we should assume the same transverse variation of the field
components in the three regions 1, 2, and 3. Therefore, let

(11)

where &, is the field distribution in the transverse direction, Z
and Z' are functions of z only. Substituting (11) into the wave
equation we get

H, =(7

1, 1 d*z ,  weoe K dZ
1 1 d*°z ou, K dzZ'
- V2 -z~ 2 _ 0 i
&, tét+Z d22+ fHe wZ dz 0 (13)
where
K7 = w?eoe s pho. (14)
Assume
1 2 2
Z Vt ft = _Kc
t
from which we obtain
& oo J (K, r) exp (jnd). (15)

022 " wleee, pop 02° Substituting (14) into (12) and (13), and eliminating Z’ gives
wege, K a‘z d*z
=T V,E, — joeoe,a, x V,E, e + [2uK} — K + 1)] == i
1 0’E H
+ L g kv LBy O + u(K3p, — K2)(K3— K3)Z =0. (16)
Jouo i 0z 0z
oH, 1 °H Assume Z to vary as exp (—jBz). Substitute into (16), from
V XAt : 6232 (9) which we get the following dispersion relation for the
Rz ofrhokt propagation constant in the Z direction:
12 =H2uK} — K2p + )] + /[2uK3 — K2+ ] — 4u(KFp. — K2)(KF — KC): (17)
O*E 0%E We can now write
t PAY »3
6241 + 2(1)2308f,uo,ugz'2* + (w2808fp,0)2(ﬂ2 — K )E, 7 — Ale—jplz + Azejplz + A3e—jﬁzz + A4ejﬁ22 (18)
E, |  O°E, Z = gi(—A e P + 4,0717) + g(— Ase I 4 4,60
_ wzﬁoﬁfﬂoﬂvtg +V, 3 g1(—4, 2 )+ g2(—4s 4 )
(19)
JE, 0°H,
+]K(,0 Sogfﬂovt X Oy oz + COMOKVt oz T3 where
J 2 2 2
= (K + B2, — pu K3
+ jo*ufeoe (u® — K*)a, x V,H, g1z wﬂoKﬁl,z( Fia = mKj)
0°H., For the lower ferrite disk (region 1) the tangential electric

+ jopoua, x V (10)

162'

field components at z = 0 are zero. Using these boundary
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conditions we get the following results:
Al = AZ and A3 = A4

and therefore

{.Z Jn(Kcr)[Anl Ccos ﬂl z

n=—o |

Ezll =
+ A,3 cos f,z] exp (jnl) (20)

Hl=j ) JiK.r)lg:4

n=—c0

nl Sin BlZ

+ g, 4,3 sin f,z] exp (jnd) (21)

El|i=-j Z

n=—o0o0

+ (P; — g2R3)A,3 sin B,z]

{K JuK (P — g1 R{)A,y sin By 2

jn ]
+ TJ"(Kcr)[(Ql - glsl)An1 sin f,z

+ (0, — 928,)A4,3 sin :822]}GXP (jn0)

Eoli= =i 3 {KCJ;,(KCr)[(glstl)A,,l sin B, 2

="

+ (9282 — Q3)A,3 sin B, 7]

2 J(K)(Py — g1 Ry)A,y sin B,z

+ (P, — g3 R,)A,;3 sin B,z]- exp (jnd)

o0

Hr|1= Z

n= — a0

KCJ;,(KCr)[(TI — 9 Pl)Anl cos f;z

+ (T, — g, P,)A,3 cos f,z]

jn
+ 7Jn(Kc’”)[(U1 —g104)A,; cos Bz

+ (U, — 920,)4,5 cos B,z] exp (jnd) (4)

o0

HBII = Z

B= —00

+ (ngz -

KcJ;.(Kc")[(% 0, - Ul)Anl cos f;z

U,)A4,; cos B, z]

in
+ J?‘]n(Kcr){(Tl - 91P1)A,,1 cos Pz

+ (Ty — g2 P2)A,3 cos 2]} exp (jnd). (25)

(22),

For the upper ferrite disk (region 3), and when using the
boundary condition

Er|3=E913=0, atz=a (26)
we get a field distribution similar to (20)-(25), except that

A, is replaced by C,;, 4,3y C,3, 1 2by f1(z — a),and §,z

by B,(z — a), where
= —jB—B? + Kn)/A;
0= .BiKiK/Ai

R, = _wﬂOKﬁlz/Al

Si = —jo[—poup? + K3 uo(u? — K*))/A,;
T, = o’ckel uo K/A,

2,2,2

U; = jo(—eo&s 7 + @’edes o u)/A;
Ay =[—p? + Ki(u + K)[- 7 + K}{u ~ K)]

and

i=12

For the dielectric medium, region 2, we put K = 0,& , = g,
and u = 1 in the previous equations to obtain the following
field components:

E.|,= Z J(Kr)[B,; sin B,z

n=—a0

+ B,; cos B,z] exp (jn0) (27)

HZ|2 = Z J,,(KCI‘)[B,B Sin de

h= —o0

+ B,4 cos B,z] exp (jn) (28)

E|,= n:i {Ilid JAK . 7)[B,y cos Bz

— B,, sin B,z] — —J K, )]cuuo

* [B,3 sin B,z + B, cos ﬂ,,z]}exp (jnB)

©

Eo|2: Z

= —

2 k) B . cos o

:uO J'( )

— B
L2 Sin B, z] + 7

c

- [B,3 sin B,z + B,, cos ﬂ,,z]}exp (jn6)

o

Hr|2 = Z

n=—o

(30)

in . '
{]7 Jn(Kcr) ]azggd [Bnl s ﬁdz

+ B,, cos f;z] + %J’(K r)

c

- [Bus €08 Bz — Bg sin ﬁdz]}exp (jn6) (1)
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"]—?I'?ﬁ [B,: sin B,z

Helz = Z

n=—-ao0

+ B,, cos fz] + ?J,,(Kcr)%

- [Bus 008 fuz — By sin fuz)exp (jn6) (32)

where
B3 = K3 - K2. (33)

The continuity of the tangential electric and magnetic
field components at the interface between regions 1 and 2 is
used to determine the constants B,;, B,,, B,3, and B,, in
terms of A, ; and 4,;. The result can be arranged such that
each B, is given in terms of A,; and A4,5. Also, the continuity
of the tangential electric and magnetic field components at
the interface between regions 3 and 2 gives four equations,
each involving one of the B,’s in terms of C,; and C,;. The
resulting expressions are long, and will not be written here.
Now, B,,; (i = 1,2, 3, and 4), which is obtained from the first
set of equations, is equated to the corresponding B,; which is
obtained from the second set of equations. The resultisa set
of four homogeneous equations in 4,4, 4,3, C,;, and C,;.

In order to have a solution, the determinant of their
coefficient should equal to zero. This determinantal equa-
tion is a function only of K2. For any value of frequency,
ferrite and dielectric materials, we have an infinite set of
values of K? that satisfy this equation. Once each of the
values of K2 is substituted in the dispersion relation (17) we
obtain the propagation constants §; and f, in the ferrite
material and in (33) to get f, in the dielectric material

The four homogeneous equations in the complex ampli-
tudes A,,, 4,3, C,1, and C,; may be written in a compact
form as follows:

ay Ap + a4, +a13C, +a14C3 =0
az14m + 32453 + a23C + 424C3 =0
a31 A4 + a3 4,3 + a33C,; + a34C3 =0
As1Apy + 42 Au3 + a43C01 + 424Cp3 =0 (34)

where a,,, d,,, ", €tc., are the elements of the determinant.
When solving (34) simultaneously, 4,3, C,;, and C,; are
found in terms of A4,;. The results are
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B3 = (a3, + Mas,)4,, = WA,
By = (a4, + May,)A,, = Wi A,

(40)
(41)

For the field distribution in the air surrounding the
ferrite-dielectric structure, region 4, it is written as in Part I,!

(10)-(13).
The second step in the analysis is to get the complex
amplitudes F,, .1, Fp 2, Hpny and Hy, 5 in terms of 4,
only. This is done by the use of the continuity conditions of
the tangential electromagnetic field components on the
boundary between region 4 from one side and regions 1-3 on
the other side, i.e., on the cylindrical surface r = R. Take E,
as an example
E,(R,0,2) |4 = E,(R,0,2) |y,
= E,(R,0.2) |5,

=E,(RO.2)]35, (a—hy))<z<a (42)

These boundary conditions are applicable in the range of 6
from 0 to 2zm, and therefore, the summation on » in the
expressions of E, in (42) can be eliminated, due to the
orthogonality properties of the exponential functions.

By multiplying (42) by cos (Inz/a) and integrating from
z =0 to z = a, we obtain the following:

Fl.nlJn(KaR) + Fl.nZ Yn(KaR) = Z LllAnli (43)
i=1
where
2
Lli =;[11 + MIZ + WII3 + ml4

+ Wsls + Welg]J(KiR)
_ By sin Byhy cos Bihy — By cos Byhy sin Byhy
i — Bt
I, = (B4 sin Byhy cos Bohy
— B3 cos Buhy sin Bohy)/(B2 — B3)
Iy =[B;cos Byhy cos Byhy + B, sin fyhy sin f by
— Ba cos Bala — h;) cos By(a — h)
— B4 sin Byla — hy) sin Baa — hy))/(B7 — B2)

I,

A, —au(azs A3q — 424033) + a21(a13a34 - a14a33) - 031(013024 - 414023) = MA,,

Az = . (35)
: 012(‘123 a34 — 024"33) - 022(013 a3z4 — 014033) + 032(013424 - a14a23)
C, = A, (az4a11 — a14G31) + (24012 — 014052)M _ WA, (36)
(014023 - a24a13)
Coaz —A, ay +aizWs +a, .M — WA, (37)
a4
Substituting (35) into the values of B,;, --, B,4 we get the I =[B4 sin Bua — h;) cos fala — hy)
following: — Bucos Byla — hy) sin Byl — hy) — By sin Buhy
B, = (a1 + May,)4,, = W A4, (38) © cos Bohy + By cos Byhy sin Buhy]/(BZ — B3)
B,, = (“21 + Mazz)An1 = WyA,, (39) 1 See Part I of this paper, pp. 782-791 of this 1ssue.
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Is =[—B, sin By4(a — hy) cos By h,

— By cos faa — hy)sin By hyJ/(BE — B3)
Is =[—Basin By(a — hy) cos frh,

— B, cos Bula — hy) sin B, h,1/(B% — ﬁ%)
B4 =In/a.

Applying the same technique to the other three boundary
conditions of H,, Ey, and Hy, we obtain the following three

equations:

Hy i J(K,R) + Hy,, Y(K,R) =

Z LZ! nti

€1 Froi + e Frpy —dyHypyy —dpHy o

s

LSiAnli

1

13

St Fint = fo2Frns + € Hypy + e Hy

where
Ly; =§[—g117 — g2 MlIg + jW3ly + jWilyo
— g1 Wslyy — g2 Wel (K R)

L= 2 Ko KRS, 00 = QT + Wl
+ (S292 — Q2)(MIg + Wely,)]

+ RGP, = g R + W)

+ (Py — g2 R)M(MIg + Wl y,)]

nﬁdl
KR
[RKzJ( “

JWilyo — Wy )

w |
+ O (KGR W L + W4110)“

2
L, = a{KciJ;l(KciR)[(ngl - Uy, + Wsls)

+ (@29, — U )(MI, + Wel)]

J(KaR)(Ty — Prg )T + Wsls)

]

R
+ (T — Pyg2)(MI, + W )]
_jwso

K .

ct

by (K R WL 5 + Wi )

jn Ba
+ R IKR) 5 (

]nG

Wily — W,ls)

aR)

€1 =

nG,
R

Y,(K,R)

€ny =

Jor = UK, J(K,R)
Joz = UK, Y,(K,R)
dy = S,K,J(K,R)
d,, = S,K,Y,(K,R)
I, = (—pB, cos Byhy cos Bihy
+ By sin Byhy cos By hy)/(BZ — B3)
Ig = (— B4 cos fyh, cos Byhy
+ B2 sin uhy cos Byhy)/(B3 ~ B3)

(44) Iy = [~ B4 cos Ba(a — hy) sin Byla — hy)
+ Basin Bula — hy) cos By(a — hy)
(45) + B4 cos Byhy sin B hy
— Ba sin By hy cos Bihi /(B3 — B3)
1o =[P4 cos Bahy cos Byhy + B, sin By sin Bk,
(46) — B4 cos Bu(a — hy) cos Byla — hy)

— By sin Bula —
Iyy=[—Pa cos Ba(a — hy)sin B, h,

— By sin Bu(a — hy) cos B h, /(87 — 53)
115 =[— P4 cos B4(a — hy) sin B,h,

— B2 sin Bafa — h,) cos Boh,)/(B7 — B3)
By =Inja

hy) sin By(a — ho)l/(B2 —

B2)

Equations (43)-(46) are four equations in the unknowns
Fyu1, Fip2, Hypy, and H, ;. When solving these equations,
these complex amplitudes are determined-in terms of an
infinite summation on A,;. The result takes the following

form:

Fiai=o04 ) QA +os Y QA
=1

i=1

= z F11Ann

H,, =04 Z QA+ 0, Z Q4,1

i=1

Z, H A nli
Fip= o 3 [Ly— 04 Qud (KR
n2 — Yn(KaR) i:1[ 1i T48dy; n( a )
— 05 inJn(KaR)]Ann
= Z, F22An1i

Hy,, = K R) Z [L21 ngli-]n(KaR)
- 0'492iJn(KaR)]An1i

= Z H22An11
i=1

(47)

(48)

(49)
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Port 2
8=-w/3

Imaginary

Input boundary

Waveguide

8 =5M/3

Fig. 2. Schematic representation of the Y-type two-disk E-plane

circulator.

where
04 = 0'1/(0'% - 0'20'3)
05 = 0'2/(0% - 0'20'3)
06 = 03/(01 — 0,03)
0'1 = enl - ean (K R)/Y(K R)
02 = dyy — du (K RYY(K,R)
03 = fur — a2 Ju(KaR)/Y,(K,R)
_ Ly;e,, Lyd,,
=L = Y, R) T VKLR)
L f, L,e
Q:L'— 1i/n2 2i%n2
#O U Y(K,R) Y,(K.R)

Fi1=0,Q, + 058,
Hyy =060 + 048y

1
F22 = }/n(KaR)

— 03 Q2iJn(KaR)]

1
Ho2 = 3k, R)

— 6405:J,(K.R)}

[Lu - 0'491iJn(KaR)

[in —0g QliJn(KaR)

The electromagnetic field components in the waveguides
have been written in Part I,' (14)-(28). These field distri-
butions are also applicable in this case, so they will not
be repeated here for the sake of briefness.

Until now, the analysis is general and may be applied to
any junction with any number of ports whether symmetrical
or nonsymmetrical. In order to get numerical results, we
shall use the Y-junction circulator as an example.

A. The Two-Disk Y-Junction Circulator

The imaginary wall between region 4 and the three
waveguides (region 5) is chosen to be a cylindrical wall as in
the case of the full height Y-junction circulator, Part L' The
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axis of this cylindrical surface coincides with the junction
axis and its radius is b/\/§ as shown in Fig. 2. Same
boundary conditions on this imaginary boundary (29)-
(32) in Part I' are also applicable in this case. For the case of
the input waveguide (i = 1), substitute in these boundary
conditions by the field distributions in region 4 and in the
input waveguide using the relations (47)-(50). When using
the orthogonality properties of the trigonometric functions,
we get the following set of equations:

+ F22 Yn (Ka "%) J Anli cxXp (]ne)

+ q;o [ {f‘l)q”" by T sin qn (% - ;)
+ a,qlﬂsin qr (M + I)J
a \/§ 2
- exp (I'y,b cos G/ﬁ) =
1=0,1,2,-,00 (51)

b
+ Hj, ¥, (Ka ﬁ) J Apy; €xp (jnb)
+ Y []coeo 7 o gn(sin 6//3 + 4
o 70T, b
In sinf 1
+ " by, cos qn (Aﬁ + 5) } exp ([, b cos 0/\/3)

=4y, [—gexp (—jK b cos 6/\/§)

I=1,2-,00 (52)
—j n=iioo ii [Fii€ws + Farepn
— Hyydys — Hppdyy]A,y; exp (jnd)
+ qio [a,q q?ncos qn (% + %) cos 0
—%’;"—Kfq sin gr (ﬁy\/?g+%)5in 0

4 JOHo b,q co0s g (M 1) cos HJ

I—‘lq \/§ + 2
- exp (I'yb cos 6/\/3)
—511[; *COS@CXp(—Jde cos 9/f J

1=1,2,00 (53)
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[¢) [+ o]

Z Z [_Fllf;|3—F22f;l4

n=-ow i=1
+Hy e, + H22en4]An1i exp (jnd)
sin 0 1)

- Z — jooE ln sin 4=

- cos 0+ b b,q sin qn\(ﬁ_@ + 1)

\/5 2
2 4 cos (ﬂq + 1) sin 6]
lq n \/5 2

- exp (Tyb cos 6/,/3)

* cos 0 + b,q

sx2
=du [Jﬁ:o sin 0 exp (—jKab cos H/ﬁ)J,
1=0,1,2-,00 (54)
where
jnG, b
= J Ik =
€n3 b/\/§ n( a 3)

015 I'yys Ky Ky, and Ky are as defined before in Part 1.1

Replacing a,, by aj,, b, by bj,, 6 by (0+ 2r/3), and
equating the right-hand side of (51}-(54) to zero, we get a
set of four homogeneous equations corresponding to wave-
guide 2. Similar equations are derived in waveguide 3, by
replacing a, by ay, b, by by, 0 by (0 + 4n/3) in the same
equations, and also equating the right-hand side to zero,
since there are no incident waves on ports 2 and 3.

In order to obtain the circulator characteristics, we use the
point matching technique on the imaginary boundary be-
tween regions 4 and 5. Truncation in the seven infinite
unknowns should be done. Also, a finite value for I should be
chosen. Consider N cylindricalmodes, 0 , transverse electric
modes, Q, transverse magnetic modes, and i = 1,2, -, M,
ie., we have M roots for the determinantal equation. For
I=0,1,-+,L,all TE,;and TM,,up to TE ;, and TM , are
excited. For p matching points in each waveguide, we have
the following:

total number of equations = 6p(2L + 1);

number of cylindrical complex amplitudes = M(2N + 1);
number of TE complex amplitudes = 3[L(Q, + 1) + Q,];
number of TM complex amplitudes = 3L.Q,.
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In order to have a solution, the total number of equations
should be equal to the number of unknowns, therefore

6p(2L + 1) = M(2N + 1) + 3[L(Q, + 1) + Q,] + 3LQ,.
(55)

III. NUMERICAL AND EXPERIMENTAL RESULTS

The numerical solution consists of two main parts, the
results of one part are considered the necessary data to the
other. These two parts are

i) the determination of K, and consequently the propa-
gation constants in each of regions 1, 2, and 3;

ii) the determination of the circulator characteristics,
numerically.

The determinantal equation is solved numerically using
the false position method up to the accuracy of 1078, The
pivoting method of Gauss is used to numerically solve the
simultaneous linear equations to obtain the waveguide
mode amplitudes, the cylindrical mode amplitudes, and
consequently the circulator characteristics. ,

In order to check the correctness of the results, a case very
near to the full height case is first chosen. This case is
hy =h, =04 in (a=09 in) and the permittivity of the
dielectric region (region 2) is taken equal to the ferrite
permittivity. Two cases have been calculated numerically for
R = 0.1 in using the first ferrite material (Y13A) over the
entire X band and plotted together with the corresponding
full height case in Fig. 3. It is clear from this figure that both
the insertion loss and the isolation curves in the three cases
are very close, while the reflection coefficient curves differ a
little. By this method we are now sure of the validity of the
analysis and the correctness of the program.

Many values for the propagation constantsin each region
have been obtained by solving the determinantal equation
numerically, and the adopted solution needs only three
values for the propagation constants in each region. So, it is
important to study how the propagation constants are
chosen. What is the most important root? What is the
second root to be chosen, and what is the third root? The
authors have studied this problem, and the conclusions are
summarized as follows. From the analysis of Section II, we
find that the denominators of the integrations I,,1,,+*, 1,
take the form of [(In/a)’ — B3], or [(In/a)* — B3], or
[(in/a)* — B%]. In order tomake I, I,, -+, I, have effective
values, these denominators should be as small as possible.
This means that the values of §,, f,, and ,which are near to
(In/a), where [ takes the values of 0 or 1, are the most
important. Since the dominant mode (the most important
mode) varies as 7/a (137.793 rad/m) along the z direction,
then the most important propagation constant is that
nearest to the value n/a.

A. Numerical Results of the Propagation Constants

As it has been mentioned before, propagation constants
are found from the solution of the dispersion relation
together with the determinantal equation. There are infinite
values of the solution that satisfy both relations at any
frequency. These infinite roots represent the propagation
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tor, R=0.1in,¢,=¢, (case 1: P=3, N=4,0,=3,0,=2, M =2,
L = 1; case 2: the same as case [, but L = 0.1).

constants in each region. The propagation constants for
different ferrite heights are calculated numerically and
plotted against frequency. All calculations have been carried
out for the ferrite material Y13A with H,, = 200 Oe. Only
sample calculations will be presented.

Fig. 4(a)-(c) shows a plot of frequency against 8,, §,, and
Bs when hy = h, = 0.05 in. It is clear from Fig. 4(a) and (b)
that the frequency varies with 8, and f, approximately in a
linear manner. The values of §, and f, increase as the
frequency increases and become larger, and larger than the
value n/a. In this range of frequency 8, and f, are always
found to be real positive. As the frequency increases, we
notice that the roots become near to each other until they
reach very close values at the upper end of the frequency
band (12.5 GHz). The values of §, are always smaller than
the corresponding f; values. Since h,; and h, are small
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compared with a, we find that the smallest values for §, and
B, are 784.09 and 331.81 rad/m, respectively, which are very
large compared to m/a. Fig. 4(c) shows a plot for the
frequency versus f,. Itis clear from this figure that it consists
of two groups, one of which has linear variation, while the
second group is slightly curved, especially at the upper end
of the frequency band. The values of §, are very close to n/a
when compared with the corresponding values of 8, and 8,
in the ferrite material. §; may have imaginary values which
represent nonpropagating modes. f; modes may be real
positive, i.e., propagating, along the entire X band of fre-
quency, may be real positive in the first part of the fre-
quency range, and then transformed into an imaginary one
(ie., nonpropagating mode) in the rest of the frequency
band, and may be imaginary all along the frequency band,
with increasing values with frequency.

It is noticed from the numerical results obtained that
when the ferrite disk is very small, the values of 8, are closer
to n/a than the values of f, and f8,. When the ferrite disk
height becomes large compared with the dielectric height we
find that f; and f8, become very near to n/a, while f, takes
larger values. These results are expected from physical
considerations. When the ferrite disks are short, then the
configuration is approximately similar to the full height
dielectric rod and the effect of the ferrite is small. Therefore,
the dielectric propagation constants are expected to be the
dominant factors. In other words, those integrals from I ,, I 5,
-+, 1,,, which are related to the dielectric region, will be
more important than the others. On the other side, when the
ferrite disks are long, then the situation reverses and the
ferrite propagation constants dominate.

In the next section, we shall use the calculated propaga-
tion constants to obtain the circulator characteristics for
these ferrite disk heights for different ferrite radii.

B. Numerical and Experimental Results of
Circulator Characteristics

Numerical results are obtained for the circulator charac-
teristics when the disks height is 0.05 in and for different
values of disk radii, and then these cases are verified
experimentally. The numerical and experimental circulator

-characteristics for R = 0.11in are shown in Fig. 5. It is noticed

that the general shapes of the numerical and experimental
results are nearly the same. Frequency of maximum isola-
tion which is defined to be the frequency of circulation takes
place numerically at 8.75 GHz, while it is found experi-
mentally to be 8.85 GHz; this means that there is a shift in
the frequency of circulation by only 0.10 GHz, and the value
of isolation is slightly less. For frequencies equal to or larger
than 9.25 GHz, most of the power is reflected back from the
input port, and the power output from the other two ports is
very small It is clear from Fig. 5 that there is only one
frequency of circulation, and no other circulation frequen-
cies in the same or opposite sense of circulation have
appeared. Comparing this result with the corresponding
characteristics, for the full height case using the same ferrite
material and radius, we find that removing the central
portion of the ferrite rod decreases the circulation frequency
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Fig. 4. (a) Frequency versus propagation constant §, in the two ferrite disks, b, = b, = 0.05in, &, = 1. (b) Frequency
versus propagation constant f,in the two ferrite disks, h, = h, = 0.05in, ¢, = 1. (c) Frequency versus propagation

constant f, in the dielectric region, h; = h, = 0.05 in, g; = 1.

by about 1.85 GHz. The values of isolation and insertion loss
at the circulation frequency are better in the two-disk case
compared with the full height case.

Fig. 6 shows the variation of ferrite radius with circulation
frequency for different disk heights. As the radius increases,
the circulation frequency decreases, and for the same radius,
the circulation frequency decreases with increase of disk
heights.

When using two disks with unequal heights the variation

of ferrite radius with circulation frequency is as shown in
Fig. 7.

These two figures can be used in designing X-band
E-plane circulators.

1V. CoNCLUSIONS

The theory presented in this paper allows the determina-
tion of the propagation constants of the characteristic
modes in each region of the central part of the junction
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which consists of two ferrite disks separated by a dielectric
material. There are infinite values of the propagation con-
stants at any frequency. However, not all of these modes are
propagating. It is found that the propagation constants in
the ferrite disks vary approximately linearly with frequency.
The linearity increases by decreasing the ferrite disk height.

Circulator characteristics have been obtained numer-
ically for different ferrite disks’ heights and radii. The general
shape of the circulator characteristic curves obtained by
numerical technique and experimental measurements are
found to be nearly the same, which verifies the theoretical
treatment.
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